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ABSTRACT

SThe minimum information approach to active control of struc-

tural systems seeks inherently robust designs by use of mean-

square optimization conjoined with a stochastic system model

which presumes as little as possible regarding a priori informa-

* tion on modal parameter statistics. This report extends earlier

results for the regulator problem to the case of full-order

* dynamic compensation with nonsingular observation noise. Opti-

mality conditions along with sufficient conditions for existence

and uniqueness of solutions and for closed-loop stochastic

stability are presented. Results concerning asymptotic proper-

ties for large uncertainty levels are also given. Numerical

results for various simple examples indicate improved robustness

properties over standard LQG designs and suggest the possibility

that, under the minimum information stochastic approach, the

burden of design computation may be reduced to that associated

with the relatively well known or' ceren.moes.
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MEAN-SQUARE OPTIMAL, FULL-ORDER COMPENSATION OF
STRUCTURAL SYSTEMS WITH UNCERTAIN PARAMETERS

1. INTRODUCTION

Many techniques advanced for the active control of highly

flexible structural systems implicitly assume the existence of

a large order "verification" model in which the values of struc-

tural parameters are precisely known. Where the critically

important issue of parameter uncertainties (arising from inher-

ent limitations in the analysis of high order structural modes)

is specifically addressed within a computationally tractable

approach, the formulation entails either (a) an essentially

geometric (in the linear algebraic sense) approach to sensitiv-
*

ity reduction, (b) ad hoc combination of inherently robust con-

trols with more standard LQ design techniques and/or (c) the

a poeteriori verification of robustness by use of methods

entirely extrinsic to the design process.t

In contrast, it may be argued that although verification

models are precise, they are necessarily false; that the struc-

ture must be regarded as a stochastically parametered mechani-

cal system (for which limited a priori statistical data is

unavailable); and that design optimization must proceed from a

measure of performance defined over the entire parameter

* For example, the work of Sesak [1,2] as reinterpreted by
Coradetti [31 actually involves static decoupling of sensitivity
derivatives and/or modal coordinates for model order reduction.
** e.g., the rate-output feedback of Balas [4] or low-authority
control of Aubrun [5] would be charged with the control of high-
order, poorly-known modes while providing enhanced stabilization
of a "high authority" LQ control designed for a reduced order
model of the low frequency modes.
t Using, for example, general multivariable measures of robust-
ness along the lines of Ref. [6].
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statistical ensemble. Very recently, such a stochastic design

approach was outlined and specifically elaborated for the special

case of full state feedback regulation of structural systems with

a priori uncertainties in the modal frequencies [7,8].

Entailing, as it does, a fundamental revision of the tradi-

tional, deterministic approach to dynamical modelling, the ear-

lier developments [7-9] must be reviewed here. To retain the

spirit of linear-quadratic optimization, we choose as the per-

formance measure the average of a quadratic functional of state

and controls over the parameter ensemble. Secondly, as a com-

plete empirical specification of parameter statistics is never

provided in practice, the design approach must accept the kind

of severely limited statistical data that is actually available.

To avoid ad hoc assumptions, the full probability assignment

required for determination of the mean-square optimal control

must be consistent with the data on hand but maximally unpre-

sumptive with regard to unavailable data. This is accomplished

by resort to a maximum entropy principle (Jaynes' principle).

Furthermore, to achieve particular simplicity and design

conservatism, we acknowledge as "available" the minimum possible

a priori statistical data needed to induce a complete probabil-

ity assignment while preserving fidelity of the overall model at

high levels of uncertainty (or for high order modes).

Thus, the approach is "minimum information" in two respects--

first, because we acknowledge as available the bare minimum of

a priori data and, secondly, because we induce a full probabil-

ity model from this acknowledged data by use of a minimum infor-

mation (i.e., maximum entropy) principle.

The resulting probabilistic description induced by this

essential data constitutes our fundamental system model and pre-

sumes as little parameter information as possible.

2



With uncertainties only in the open loop frequencies, we

identified the minimum data set by examining the phenomenology

of frequency uncertainties as reflected in the mean (the par-

ameter ensemble averaged) response, the covariance matrix and

the "expected cost" matrix (i.e., the covariance of the co-state).

The principal effects of modal frequency uncertainty are the

introduction of a spurious damping (the "decorrelation damping")

into the mean response and the suppression of cross-correlation

among distinct modes. Essential to the proper modelling of such

qualitative features are the decorrelation damping time con-

stants, termed the "modal decorrelation times". These are gen-

erally inversely proportional to modal frequency standard devia-

tions and constitute fundamental, albeit unconventional, measures

of frequency uncertainty.

Acknowledgement of only the mean (or nominal) values of

modal frequencies and the modal decorrelation times as available
data induces a white parameter statistical model which reduces

the optimization problem to solution of a modified Riccati

equation (the "stochastic Riccati equation") for the expected

cost matrix. Under mild restrictions, this possesses a unique

positive semi-definite solution which guarantees closed-loop

stochastic stability. Thus the proposed approach reduces the

need for design iteration to achieve robust stability.

The most significant aspect of the stochastic Riccati

equation is the character of its steady-state solutions for

large uncertainties [9]. If the uncertainties in all open-loop

frequencies increase without bound (i.e., all decorrelation

times approach zero) the expected cost reduces to a diagonal

matrix whose elements are independent of modal frequency statis-

tics and are given by simple analytical expressions. This

asymptotic solution gives rise to a velocity feedback control law

3



which is stable regardless of the values of modal frequencies or

damping ratios. Thus a greater degree of robustness is obtained

than was originally sought.

In the more typical case in which the frequencies of low

order structural modes are relatively well known while modelling

accuracy deteriorates for the high-order modes, the stochastic

Riccati equation automatically produces a velocity feedback con-

trol (of the asymptotic form) for the high-order, poorly-known

modes. At the same time, for low-order modes having small uncer-

tainties, the control closely resembles the deterministic plant

solution. In other words, a "high authority", essentially deter-

ministic control for well-known modes and a "low authority"

velocity feedback control for relatively uncertain modes natu-

rally emerge as limiting regimes of a Ilobal control law which

is guaranteed to be stable over the parameter ensemble.

This general behavior has immediate consequences for the

computational effort required for high order systems. In brief,

the computational burden required for determination of the con-

trol gain is mainly associated with the relatively few well-known

("coherent") modes. Provided that the dimension of the coherent

system is moderate, the stochastic Riccati equation is amenable

to numerical solution of acceptable accuracy for systems of

arbitrary order.

The above qualitative features provide strong motivation for

extension of the formulation to linear, dynamic compensation.

* Here we consider a structural system as described by a finite

number of its "all-elastic" normal modes with uncertainties in

the open-loop frequencies. We remove, however, the restriction

of previous work to full-state feedback and consider dynamic out-

put feedback compensation. Chapter 2 sets forth the minimum

information stochastic modelling approach and derives the

4



stochastic Lyapunov equation which must be appended to the mean-

square optimization problem as a constraint. Various properties

of this equation are related to closed-loop stochastic stability

and the existence of steady state, constant gain controls. In

Chapter 3 we specialize to full-order dynamic compensation, and

derive explicit stationary conditions. Existence and uniqueness

of solutions to these conditions as well as their asymptotic

properties for large levels of modal frequency uncertainty are

explored. Chapter 4 concludes by a presentation of computational

procedures and various numerical examples. From these theoreti-

cal developments and supporting numerical results, it will be

seen that the desirable features of the stochastic design approach

as applied to full-state feedback regulation are indeed retained

in this less idealized setting.
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2. THE MINIMUM INFORMATION FORMULATION OF THE OPTIMIZATION
PROBLEM

2.1 Problem Statement

As in the previous work (7], we consider the control of a

linear elastic structure subject to small deformations and no

rigid body degrees of freedom. Modifications needed to include

rigid body modes are straightforward and need not be treated in

this initial development. Retaining n normal mode coordinates

in the system model, the state-space form of the equations of

motion may be written:

= (A + a(t))x + Bu1 + w

= Cx + w ()

R 2nx2n B c R2nxt u R , 1 C RP

where x is the vector of modal coordinates and velocities with

its odd indexed elements representing modal displacements and

the adjacent even indexed elements giving the corresponding

modal velocities. w1 is a white disturbance noise with inten-

sity V1 2 0, u1 the control input and B the input map:

4?6
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*b4_

0 0 ... 0

b2 1 b2 2  •.. b2Z

B= 0 0 ... 0 (2)

b4 1 b4 2  .. 4

where the non-zero elements are proportional to the normal mode

shapes at I actuator locations. n is the vector of sensor out-

puts with output map C and observation noise, w2. We assume

that w2 is independent of w1 and has a nonsingular intensity

matrix v2.

X is the nominal or mean value of the system map:

A _ block-diag [ -31k ..,n -W 2 -2n (k3k

where the wk; k=l,...,n are the nominal design values of the

modal frequencies and the nk are the modal damping ratios

representing inherent structural damping. It is assumed

throughout that:

0 < nk << ; k = l,...,n (4)

7



Finally, a(t) is the random portion (assumed zero mean) of the

system map representing possible statistical variation of the

modal frequencies.

As a preliminary step, it is convenient to express the

above relations in the eigen-basis of A. In view of the assump-

tion of small damping we may simplify this process by introduc-

ing the resonant approximation for X:

A = block-diag (5)":' k=l, . n L -W -...- k k nk k

so-called because the difference between damped and undamped

natural frequencies is neglected. With this replacement, the

eigenvector matrix of X is:

= block-diag (6)
k=,..n k k

Then, defining:

V.!
.

: °8

± *** **



= diag { lli-n1) ,il(-i-nl),...,Wn(i-nn) ,Wn(-i-nn)l a.

V(t) - 1- a 0 b.

8 - B C.

1 1

A f-I= Cs€f

the equations of motion written in terms of the state-space

modal coordinate vector:

E A 0-1 x (8)

assume the form:

= jt+ a U 1 + wz a.

= yE + w2 b. (9)

44 --

: I= + Alt) C.

Furthermore, we suppose that a priori uncertainty exists

only in the open-loop frequencies so that:

1 9
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v(t) = diag {Jim (Pk) 6k(t) 1 (10)
k-l,... ,2n

where Im(...) denotes the imaginary part. The 6k(t), k=l,...,2n,

are assumed real valued, zero-mean, stationary random processes

in time and statistically independent of w and w2"
Obviously, a general treatment would require that all sys-

ten maps be random. However, the above restriction offers an

appropriately simple point of departure and permits relatively

easy interpretation. Moreover, as will ultimately be seen, the

very special problem considered here still exhibits important

features.

With the above restrictions, suppose the control to be pro-

vided by interconnection of (9) with a fixed order dynamic com-

pensator. Specifically, the controlled system equations take

the form:

= +0 uI + wi ; C2 n a.N 11)1

= aq + u2  ; q C C q  b.

where

u1  -Kq

u 2  f in (12)

n - yE + w2-2

10
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Intensity v 0 v2 > 0 (13)
w0 0 v2

and where q is the compensator state and K,f are the control

gains.

As a measure of performance of system (11), we take the

quadratic functional:

Ef to dt [ Hrlt + uI R2uI ] a.

R2 > 0 , e R x b.

(14)

r _ H R10 c.

R 0, R2nx2n d.

where the averaging operation includes the parameter ensemble

(i.e., in this case the ensemble of the 6k(t)). Note that term-

inal state weighting is ignored in (14) since its inclusion

would entail only superficial modification of the following

results.

The problem is to determine K and f in (12) (with appro-

priate choice of a) to minimize J. It is expeditious, at this

point to recast this problem in terms of the augmented state:

2n+N
q c (15)

4q

11
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in which case (11) through (14) become:

tH
min: 3 = E[ft dt XH R'X] (16)
,f,a 0

= [A' + v' -F'] X + W(t) (17)

where

W tM A (18)
fw

2

and

0 r 0

0 0

= ~fy 0 c. (19)
-fY 0

0 fvH d.

RI [ r  H e.0 K R 2 KI

Finally, after straightforward manipulation, we can

restate the optimization problem in terms of the augmented

co-state matrix as follows:

12
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I

min: = tr t t P (t) v' (20)
K, f, O

PS = E[P'] F c(2n+Nq )x(2n+N ) a.

-P' = [A5 + v' -F,]H P' + P'[A' + v' -F'] + R' b. (21)

P'(t 1 ) = 0 c.

where the averaging in (21.a) now extends only over the parameter

ensemble. The quantity P' (which we term the expected cost

matrix) is the covariance of the augmented co-state and gives a

direct measure of mean-square performance by virtue of (20).

From the assumptions made concerning W(t), the disturbance

noise is a differential process (with unbounded variation) and

care is needed in the precise specification of the meaning of

(17). Such a specification should also allow the parameter

noise, v', to be a differential process. To answer this need,

we shall take (17) to mean the truth with probability one of the

equality:

b h(t) [-dX(t) + [X'-F']X(t)dt + dv'(t)X + dW(t)] = 0 (22.a)
a

for all to < a < b < t1 and any continuous matrix function, h(t);

where the above stochastic integrals are interpreted according to

Stratonovich [10,11] and Wong and Zakai [121:

13
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b h(t) dv'(t) X(t) -

a

1. i.m. Zh(i i ) [V. (t i ) -V'(ti-l)] [h(X(t k ) + X(ti-l))] (2 2. b)

40 i

where {tkl is a partition of the interval [a,b] and

- max (ti -t 1 ) )
i> (23)

t.e [ti ,ti] I
[t i-li ,1i

Interpretation (22) is the appropriate one for our applica-

tion since, in writing (17) we have in mind a mechanical system

whose parameters are perturbed by a noise of finite total power.

Adopting the more familiar Ito differential for (17) would

ignore this fact. However, in the case in which v' is white,

(22) yields results corresponding to a bandpass parameter noise

in the limit as the passband approaches infinity.

Thus, with (22), v' may be treated as a process of bounded

variation (almost everywhere) and we may state various formal

results for the system response in terms of the transition

matrix of (X' -F' + v') as follows:

Theorem 1

Suppose that v' (t) is a stationary zero mean random matrix

process. Define an increment in the nonstationary process W' by:

1(tl~2 WO(t ) -W (t I1) j jt Iv 2a l(4
W' t 2 ' t v t I (4

14
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and assume that W' (tlt 2) possesses joint moments of all orders

for all finite t2-tI . Further, suppose that F' (t) is bounded

and continuous. Then under interpretation (22) and in a prob-

ability-one sense:

A. The transition matrix, 0' (t,T), for system (17) is given by:

= '(tT) ; t > T a.
k=O k

where

= exp [T'(t- T) + W' (Tt)] b.
T1 T

)k= ft dTl f1 d2 k-1 dT (25)
T 1 d 2.f T dk

(k>O)

X[00olt, Tl) F'(TI) o(TI, 2) F' (T2 ) . . .

• ... *(Tk-l, Tk) F'(Tk)0 0(Tk, T)] C.

and where the integrals are the usual Riemann-Stieltjes sums and

extend over the left semi-closed intervals.

B. *'(t,T) is almost everywhere continuous and its first and

second moments are continuous and differentiable in both

arguments.

C. Eqs. (21.b,c) possess the unique, positive semi-definite

solution:

15
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"ti

P'(t) - f dT (t,T) ; t e [t, tll (26)
t0

where, for T k t, 6 S T-t:

(t,T) = 'H(t+6,t) (t+6,T) '(t+6,t) a.
S(2)

(T,-) = R'(T) b.

D. j(t,T) EI*(t,T)]; t C [t 0 t] is continuous and dif-

ferentiable in t and T.

The above are entirely analogous to the results of Theorem 1

of [7] and the proof may be omitted here.

In the case in which v' is a differential process, we have

an alternative formulation. In such a case, by virtue of (22),

system (17) possesses the Ito differential:

d X'(t) = (A' -F'(t) + I') X(t) dt

+ dv'(t) X(t) + dW(t) (28)

I' = lim E[W' 2 (t,t+A)]

A+O

where hI' is the so-called Stratonovich correction.

16



2.2 The Minimum Information Model - Derivation of the

Stochastic Lyapunov Equation

As may be seen from Theorem 1, a complete specification of

the statistical structure of open-loop frequency deviations per-

mits explicit determination of P'. However, a complete proba-

bility model of the parameters based upon empirical determina-

tions can never be provided in practice and we are faced with

limited available data on parameter statistics. To induce a

complete probability model uniquely from the available data we

define the desired probability assignment as the one which, under

the constraints imposed by available data, is maximally noncom-

ittal with regard to unavailable data, i.e., maximizes the

entropy of the underlying processes.

More specifically, we may introduce measures of information

reposed in the statistics of relative deviations of modal fre-

quencies in the following way. First, note that only increments

in the non-stationary processes 6k(0,t); defined by

A~ t 2

6k(tl,t2)=A 6k(0,t2) -6k(0, tl) = ftI d6k()
1 (29)

t2 - t1  ; k = 1,...,2n

actually enter into (26) and (27) and thus need to be considered.

Define {t(k) } as an arbitrary division of the real line with
m

m = 0,1,...,Nk; Nk finite and k c N where N comprises a set of

distinct integers in the range 1 to 2n. For notational conven-

ience let { kEN)} be the totality of such divisions. Then a

measure of k informatioa contained in the finite set of

increments:

17
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)(k) k) N (30)6kl-oki'tlk )) S' k l t 2 t 6) '' ' O l N k- l 'tiNk ) k e N (30)

is given by the relative entropy of these increments.

H[6{t -f da P[6;{ t }1N) in P[6;{t(N)} (31)
k k Nk

where do is the volume element in the sample space of (30) and
p[6;{tkeN)- }] is the joint probability density of the increments

(30). Although it is possible to define a measure of entropy

for the stochastic system as a whole, the measures (31) defined

directly on the 6k(tlt2) will suffice for present purposes.

Now in practice, we may suppose that specific numerical

values may be assigned to various statistics of the 6k(tl,t2)

(defined as functionals of P[6;{t(kEN) }) based on empirical

determinations. This constitutesk the "available data" of the

problem. To avoid ad hoc assumptions on the probability distri-

butions of frequency uncertainties, we choose P 6 {tkeN)-- }] to

maximize a measure of our ignorance of the incrementsk(30) in

the light of the available data. In other words, given con-

straints on P[6; EN implied by the available data, we

determine o kI 6 ;{ t kN)I to maximize H, [;{kEN)] of

(31) for all choices of N, Nk and{tm m ,,N [ k k E NJ.

The idea of employing a statistical model which is maxi-
I mally unpresumptive with regard to parameter data can be carried

still further. We may choose to acknowledge as available a data

set which is essential to the proper modelling of open-loop

statistical response and is just sufficient to induce a well-

defined probability assignment via a maximum entropy principle.

18
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The discussion of section (3) of [13] established various quali-

tative features of the open-loop system response (in particular

the mean, covariance and expected cost), and introduced the con-

cepts of "decorrelation damping", "coherence limit" and "incoher-

ent range". It was concluded that, at the very least, any
approximating probability model of the 6k (O,t);k=l,...,2n should

preserve the time scales of decorrelation damping, provide a cor-

rect estimate of the coherence limit and satisfy the bound given

by (19.b) of [13] for the cross-correlations of high order modes.

This is possible only if the "modal decorrelation times", Tk:

A

Tk  = Ilk) Jk)-

=f O dtIE[exp iIm(1Ik) f t dT 6 (T) 2

(32)

k =1,..,2n

T2m T 2m-l ; m = 1,--.,n

are admitted as fundamental data. In essence, numerical values

assigned to the Tk establish the scales of frequency deviations
relative to the remaining time scales of the problem.

Thus, we propose to acknowledge only the T k(k=l,...,2n) as
the "available" data. It remains to determine the probability

assignment which maximizes the entropy (31) for all N, Nk,

{t ( k) . m E [0,Nk], keN} subject to the constraints implied bymk
(32). We term the resulting probability model the "maximum

entropy probability assignment induced by the data" (32).

Here we repeat the answer to this problem given in Theorem

3 of [7]:

19
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Theorem 2

Assuming that the processes (29) possess finite variances

for all t,,t 2 E(O,) and stationary increments, the maximum

entropy probability assignment induced by (32) is the one under

which the 6k(O,t);k=l,..., 2n are independent Wiener-Levy pro-

cesses with intensities Ik/4(k):

E[k (0,t)I - Ikiti/lIm(ki

(33)

12m = I2m-1 M = l...n

It must be noted that if the available data encompasses

more than specification of the decorrelation times, the result-

ing maximum values of the information measures (31) are smaller

than the values corresponding to the above probability assign-

ment. On the other hand, if the available data omits some of

the decorrelation times, a maximum entropy probability amsign-

ment for which (29) possess finite variances for finite t does

not exist. This arises because (31) monotonically increases

with the noise intensities so that, loosely speaking, the maxi-

mum entropy model involves white noise of unbounded intensity.

Thus, in this sense, the decorrelation times constitute the min-

imum data required to induce any "reasonable" maximum entropy

probability assignment.

Most importantly, the 6k (t) are modelled as white noise so

that posterior learning is impossible and the stochastic control

problem is nondual. In consequence, the white parameter uncer-

tainty model provides a worst case situation from the point of

view of parameter identification. Indeed the model may be used

20



to determine performance degradation due to parameter uncertainty

* and to assess the need for identification and adaptive algorithms.

With this maximally unpresumptive statistical model we are
in a position to determine a single closed equation for P' and

restate the optimization problem as follows:

Theorem 3

Under the maximum entropy statistical model induced by the

decorrelation times as given in Theorem 2 and F' (t) bounded and

continuous in t Frto, tl], the variational problem of (20) and

(21) becomes:

t
min: J = ft  dt tr[P'V'] (34)
K,f,a 0

where P' is the unique, hermitian, positive semi-definite solu-

tion of:

-P' = AI-FI ' p, A'-F'- I'] + R' + I'{P'}

(35)

where

diag [W1 Il ,  wnn n In ] b.

21
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and where, for any square matrix, M:

{M1 _ diag [Mkk] (37)
k

Proof

With the statistical model of Theorem 3, and the definition

(22) of stochastic integrals, the results of Theorem 1 may be

used. In particular, (18) yields:

#J(t,T) = 0-H(t+ 6,t) *(t+6,T) 0'(t+6,t) a.

(T~t6) 't+6)(38)

*(t+6,T) = 0'H(T,t+6) R'(T) *'(T,t+6) b.

where 6 > 0. Equation (25) shows that *'(t+6,t) depends upon

6k(tl,t2) only for tlt 2 c(tt+61, while *'(T,t+6) depends upon

6k(tl,t2) only for tl1 t2 e[T,t+6). Since these intervals are

disjoint and the increments of 6k(O,t) are independent, the

ensemble average of (37.a) becomes:

(t,T)= E[ ,H(t+6t) T(t+6,T) *'(t+S,t)] (39)

where

(t,T) _ E [ (t, T)]
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Now examine (25). Keeping in mind that 1) the 4os appear-

ing in the integrals of (25.c) are each dependent on increments
'i4

of the 6k(0,t) over mutually disjoint intervals, 2) that partial

sums of (25.a) are almost everywhere convergent, and 3) the

6k(O,t) are Gaussian with variances (33), it is seen that the

contribution of kC2 01 (t+6,t) to *' (t+6,t) produces terms of

order 62 on the right side of (39).

Equation (39) may thus be written:

E[((t+,t) -t o(t+T)F'(T (T t ) )

(t, T t) _t+ 1 d l0o t 1

X f t+ , ) 0 t 6 t f t 6d l o(t+ 6'Tl)F '(Tl) o( l ' t ) ) ]

+ 0(62

Similarly, using the expression (25.b) for the os appearing

above, we have:

(t,T) = E[AH T(t+6,T) A] + 0(62)

A= + A'6 + W'(t,t+6) + W'2(t,t+6) - t 1TIF'(TI)

After expanding out, rearranging and dividing by 6:
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+% 1- .2(t[a t)t+ )1 -T(t, t)

.2p

4%

= IX' -F'(t) + l-E [W'2 (tt+6)])H (t6)

+ (t+6, )(A' -F'(t) + E W' 2 (t,t+6)])

+ 4,t26

+ 1 E[w'H(tt+6) T (t+6,T) W'(t,t+6)] + 0(6)

Next use Theorem 3 to evaluate the above averages, then

pass to the limit 6+0. Recalling that -L j(tT) exists byet b
Theorem 1.D, we obtain:

-(t,T) (H (t,4)

(40.a)

+ i(t, ) (A' -F' (t) - ") + I'{j(tr)

with I given as in (36). Also, (27.b) yields directly:

I(T, T) = R'(T) (40.b)

Finally, integration of all terms in (40) over T c(t,t I] and

use of (26) gives (35).

The linearity of this equation guarantees the uniqueness

of the solution, and the positive-semidefiniteness of P'(t)

noted in Theorem l.C implies the same property for P' (t). 0
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Under the maximum entropy statistical model we thus obtain

a modified Lyapunov equation for P' which must be appended to

the variational problem as a constraint. Clearly as the decor-

relation times approach infinity, the matrix ' approaches zero
and (35) reduces to the familiar Lyapunov equation for a deter-

ministic plant. Note that (35) could have been shown by pro-

ceeding directly from the Ito differential, (28). However, the

method of the above proof illustrates the simplicity and unity

afforded by the formalism of Theorem 1.

2.3 Stochastic Stability and the Steady State Case

Because of the relative ease with which constant gain con-

trols may be implemented, we hence forth consider only the steady

state case and suppose that K,f and a are time-independent. As

a preliminary step, we first consider stochastic stability and

introduce "equivalent coefficient matrices" in the sense of

Kleinman [14]. In the following, the equivalent coefficient

matrix of P' in (35), for -ample, will be denoted by:

AF,[(A' -F' _hI,)H P,+P,(A' -F' - I') + I'{P'}]

or more simply by AV, whenever clarity permits. By definition,

the limit of P' as tI approaches infinity exists if and only if

Ap is exponentially stable. When this is so, we term K,f and

a admissible controls. Note that the equivalent coefficient

matrix, A- of the covariance of X (which is adjoint to P') is
simply A!,. Thus admissible controls imply second mean

pe
stability (for a discussion of this and related concepts of

stochastic stability see (15]).

More precisely, we have the result (see Ref. [161 or [17]).
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Lemma 1

Consider:

-A HA + AA + I'{A} +S , t e[top tl]

(41)

A (t 1 ) = A 1

with S > 0 (S 5 0). If AA[AHA + AA + II{A}] is asymptotically

stable,

limAt) = A
ti +G

where A exists as the unique positive semi-definite (negative

semi-definite) solution to:

0 H
0 = Go+ A A+ I'{A0} + S (42)

In consequence, under admissible controls, the steady state

performance:

jlim n / t1-to
Iti-to I+o

exists and assumes the form:
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= tr[PV'] (43)S

where P' is a positive semi-definite solution of:

0 = [A' -F' - I'lH p, + F,[A' -F' -hI']
(44)

+ R' + .r{F,

We now consider (43) and (44). Preparatory to determina-

tion of the optimal control gains we note the following results:

Lemma 2

Let 6[...] denote the first variation of [...] consequent

upon variations in K,f and a subject to the admissibility condi-

tion and (44). Then the stationary condition:

6 IS] = 0 (45)

determines a minimum of J

Proof

The condition for extremalization of J requires thats

6[F'] vanish. Consequently, the second variation of P' may

be computed from (44) as:

27

L ',..,, N



0 - [X -Fo -hill 6 2 [F ] + 62 [F 'J[K -Fo' -hu,'

+ ,{2[ + 0 01
L0 6K] R 2 6 [1c]

where and' denote K' and F' evaluated with a,K and f as
0 0 H

determined in accordance with (45). Since 6[K] R2 6[K] ? 0 and

A2 [F,] is asymptotically stable, 62 [P'] is positive semi-

definite by Lemma 1. Since V' > 0, the second variation of :s

is non-negative. 0

In the following, we shall concentrate on the derivation

of the stationary conditions, i.e., the conditions imposed on

M,K and f by the requirements:

6[J i= 0 a.

U A tr[P'V'] b.
s (46)

0 = (K' -F' -hI]H F, + , [, -F' -hi']

c.

+ R' + I'{P'}

Subsequently, at least for the case of full order compensation,

(Nq = 2n), the conditions under which AV, is asymptotically

stable will be established.
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3. THE MEAN-SQUARE OPTIMAL FULL-ORDER COMPENSATOR

3.1 Derivation of the Stationary Conditions

Here and in the remainder of this report we consider the

case of full-order dynamic compensation for which Nq = 2n in

(46). Leaving aside the question of admissibility for the

moment, let us now derive the stationary condition (46.a).

To handle the constraint imposed by (46.c) most expedi-

tiously, we introduce the hermitian multiplier matrix,

SC4nx 4n and form the Hamiltonian:

H tr[P'V' + ([A' -F' -hIl]H F, + F,[X, -F' -i']
(47)

+ R' + I{P'})Q']

Then (46.a) reduces to the requirement that the first variation

of H consequent upon unrestricted variation in a,K,f and P'

vanish. Partitioning F' thus:

F [:H PPq] (48)

q q

with similar notation for Q', we obtain the following specific

conditions:
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H , [A'-F'- 1'IQ' + Q'[A'F'-1IH + I'{Q'} + V' a.

= 0

aKP Qq + PqQq) +R2KQ q] = 0 b.

(49)
2] ( q + Pq+ PqfV2 ] .

OHa = 
2 [pHqQq +PqQq] = 0 d.

From (49.a), Q' can now be identified as the covariance of

the augmented state. Furthermore, it is easily checked that by
virtue of (46.c) and (49.a,b,c), (49.d) is an identity. This

manifests the well-known result that the stationary conditions

furnish no determination of the compensator dynamic matrix, a.

Indeed it is fortunate that we may choose a so as to simplify

(46.c) and (49) very greatly.

In preparation for the main result, define the state trans-

formation:

(50)

T = [ I 2n 1 ]
I2n -2n

so that q is the observation error if we view the compensator

as a full-order observer. Noting that

30
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I= TT PT J
Q- = T Q TT (51)

partition P, and Q in accordance with (48):

S q

Finally, with the notation:

- A-
u = P - (52)

we have:

Theorem 4

With the above definitions and the choice:

= um SK -fY (53)
'153)

the specifications:
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Pq = 0 a.
(54)

Q = QUq b.

and

K R 1  H C a. (55)
H

f= q Y b.

o = ( m-K)P~ + P m-BK) +r + KHR 2 K + ({-+ Pq}

1 q q0 =(Um- 0K) Q + &(Ilm- OK) H + BKO q + Qq KH 8 (56)

+ /{QE + v

0Y (.ff)H + (.-Yfy) + IKHR

0 q PqmR 2K

(57)
0=" (q-fy)q (im-fy) + i{Q1 + vI + fv2fH

identically satisfy the stationary conditions (46.c) and (49).

The proof is given in Appendix 1.

With the choice (53), system (17) assumes the form:

S -0q + w 1  a.

+ }. (58)

q - l~ q -Oiq + fy(E-q) + fw2  b.
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so that the compensator structure is as shown in Figure 1.

Furthermore, referring to (28), the mean value of is seen

to satisfy:

-- "m

Thus, it is clear from (58.b) that with a chosen as in (53), the

compensator is a full-order observer of the mean state.

It is also evident that under (53), Eqs. (55), (56) and (57)

comprise the only essential stationary conditions. Introducing

further notation:

q (59)
A

A A - '-

Q =Q~ Qq

A -1 H
a= 8R2

• ' l(60)

a =y v2 y

slight rearrangement of (55) through (57) yields the following
stationary conditions:
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Corollary 1

With the full-order compensator form given in (58.b), the

gains:

-- 8H

R21
(61)

f H -1
f QY V 2

where P, Q, P, Q z 0 satisfy:

-Ho P + P + P+P} + r -P P a.
S(62)

0= m + Q + I{Q + Q} + v-Q b.

m -Q a)H P + P( -Q j) + P O P a.

(63)

0 ( -a P) Q + Q (PM ) pH + Q a Q b.

yield an extremum for the steady-state performance, Js"

The particularly simple form of (62) and (63) is to be

noted. Observe that in the deterministic plant case (I = 0),

(62) form the only restrictions and reduce to the familiar

uncoupled regulator and observer Riccati equations. Also in

the absence of the terms I{P} and I{Q}, (62) are of the form

of the stochastic Riccati equation arising from the regulator

problem treated earlier. In general, however, (62.a) and (62.b)
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are coupled through I{P} and i{QI so that the effects of modal

frequency uncertainties preclude the separation principle. Also

the coupling terms effectively augment the diagonal elements of

r and vl, thereby demanding greater control authority and

stabilization. Moreover, from (63), P and Q tend to increase
H H

with the controller input K R2 K and its dual f v2 f.
A A

We may say that P and Q represent error "leaking through"

the regulator to the observer and vice-versa by virtue of param-

eter uncertainty.

To summarize, we consolidate the above results and simplify

the requisite conditions for admissibility of the controls:

Theorem 5
A

Suppose that P, Q, P, Q exist as positive semi-definite

solutions to (62) and (63). Then with constant gains given by

(61) :

A. (Um-fy) , (11 -fy) , (Um-OK) and

(I -BK) are asymptotically stable.

B. The stochastic system (58) is second mean exponen-

tially stable and almost surely exponentially stable,

i.e., the control is admissible.

C. Eq. (61) yield a minimum of the steady state per-

formance, 7s"

The proof is given in Appendix 2.
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At this point, it is well to recapitulate the above develop-

4 ments, indicating where the derivation is subject to significant

generalization.- First, we chose to treat the problem of mean-

square optimal dynamic compensation of structural systems with
uncertainties in the open loop frequencies within the dual form-

ulation, involving the augmented co-state or expected cost matrix.

* This gives rise to the statement embodied in Eqs. (20) and (21)

which is applicable to any statistical model of parameter uncer-

tainties. Next we imposed the minimum information statistical

model of frequency uncertainties to obtain the variational prob-

lem of Eq. (46) which involves a variational constraint imposed

by the stochastic Lyapunov equation for the expected cost. Treat-

ment of less restricted types of parameter uncertainty would pro-

ceed analogously to obtain an appropriately generalized stochas-

tic Lyapunov equation.

Assuming admissibility of the controls, and specializing to

the steady state, full-order case, we derived the optimality con-

ditions associated with the variational problem of Eqs. (46).

Choice of the compensator as a full-order observer for the mean

* state is found to permit great simplification of these conditions

resulting in Eqs. (61) through (63). Clearly, the case of time-

varying controls may be handled in a similar manner. Moreover,

we may anticipate that assuming q c C q, N q< 2n and proceeding

as in this section, the optimality conditions for reduced-order

dynamic compansation may be derived. once again, judicious

choice of the compensator dynamic matrix, a, will result in

drastic simplification and yield appropriately modified versions

K . of Eqs. (61), (62) and (63).

Finally, Theorem 5 shows that existence of positive semi-

definite solutions to the optimality conditions, Eqs. (62) and

(63), guarantees the minimum property and second mean and almost

37



sure exponential stability for the closed loop system. Thus the

new approach to full-order compensation holds the promise of

ensuring robust stability under a design-conservative statisti-

cal model of parameter uncertainties. The issues of existence

and uniqueness are immediately addressed in the following section.

3.2 Existence and Uniqueness of Solutions to the
Optimality Conditions

The results of this section represent an extension of the

earlier work on full state feedback regulation to the more gen-

eral problem posed by Eqs. (62) and (63). As in the classic

work of Wonham [17,181, or the developments of Merriam [16], the

basic technique is to establish the existence of bounded mono-

tone sequences of positive semi-definite hermitian maps. In

this connection the following result is essential [191:

Lemma 3

Every sequence, (Xi}, of hermitian positive semi-definite

matrices bounded below (above, resp.) with (Xi+1 -Xi) negative

semi-definite (positive semi-definite, resp.) for each i con-

verges to a positive semi-definite limit.

In addition, we shall need a preliminary lemma on the

familiar Lyapunov equation [16,20].

Lemma 4

Consider:

AH P + P A + S = 0 (64)
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A. If S > 0 ( 0, resp.) and A is stable, (64) has a

unique solution P, and P 2 0 (5 0, resp.). If, in

addition (Sh, A) is reconstructible, P > 0 (< 0, resp.).

B. Suppose P 2 0 (5 0, resp.), S 2> 0 (5 0, resp.) satisfy

(64) and (S , A) is detectable. Then A is stable.

With regard to stochastic Lyapunov equations of the form:

0 = AH P A +I{P} +S (65)

we can state [14]:

Lemma 5

If A p[AH P + P A + I{P}] is asymptotically stable and S > 0

(5 0, resp.) then the unique solution of (65) is positive (nega-

tive, resp.) semi-definite.

Finally, we must recapitulate earlier results for the

stochastic Riccati equation of the regulator problem [7]:

Lemma 6

Consider:

0 A H P + P Am + I{P} + r -P a Pm
(66)

A A -
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where r k 0 and I and a are as defined by (36.b) and (60.a).

Under the conditions:

(A, a ) stabilizable

Crh, A) detectable

(66) possesses a unique positive semi-definite solution P, and

(A -aP), (A - I -aP) and Ap[A P + P Am + l{PI] are asymptoti-
cally stable. Moreover, suppose that P1 and P2 are the solu-

tions of (66) with r = r1 and r = r2, respectively. Then

r1 k r2 implies P1 k P2.

The dualization of Lemmas 4, 5 and 6 is immediate and need
not be considered explicitly.

To simplify this initial development, attention is hence-

forth restricted to the case:

) , (i, V1 ) controllable

(r 1 , i) , (a , 11) reconstructible

although, as subsequent numerical results suggest, it is likely

that these conditions can be weakened considerably.

Within the above restrictions, consider the sequences
A 

A
Pi' Qi Pi and Qi defined by:
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= - Pi + P iPm + r1 + i{Pi -P. a P. + I{Pi a.

-H} (67)
0 -- mi + QeiUm + v, +  QH{Oi -Q j Qi + I{Qi} b.

0 = + Q j)1  + Hl+ 1

= Pi+l(Iimm -Q) + (mQ)H Pi+l + Pi P.i a.
H (68)

0 Q i~l m -oPi ) H + ( i) Qi+l Qi a Qi b.

for all i : 0. The following results on the boundedness of these

sequences is essential.

Theorem 6

Under the conditions stated above, there exist bounded,
u it A u u t A A witpositive definite P, P, P, P, Q, Q, Q, Q with

Au~~ u> U~tA AjpU 91 U _ , Qu i Qu
P P P P Q Q Q ~Q

such that:

P = 0 Q (69)

in conjunction with (67) and (68) implies:
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S76

PI < P pU, QL < i QU

(m -aPi) , (im -Qi d) stable

and for i and

A
2 A A

P < i u, A< i Q u

for i k 1.

The proof is contained in Appendix 3.

This prepares the way for the main conclusion:

Theorem 7

With -5m' I, rl, vI a and ' as defined previously and the

conditions:

(1, c% ) , 1, Vll) controllable

-- --
(rl , ) , (a , 1) reconstructible

Eqs. (62) and (63) possess unique positive definite solutions

for P, P, Q and Q. Moreover, (im -OP) and (ii -Qa) arem m
asymptotically stable.
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Proof

First, let us stipulate that P and Q be chosen in accord-

ance with (69) and Theorem 6. Then, for all i 2! 0, P i Pi' Qi

and Qi as defined by (67) and (68) are positive definite and

(Im -maPi) and (' m -Q i ) are asymptotically stable.

Defining:

A A A

p =P. -P.
i i+l i

(70)

Qi Qi+l -Qi

and

Pi = i+l
(71)

A
EQi = Qi+l -Qi

manipulation of (67) and (68) yields
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0 = z( i + (5M H E +

[ E + Q-(72. a)
[Pi F +QU E1P + a +E a p .*: " i-i P-

0 -- ( m  - p i H + ( -aP i) Z _t E( .1 ~ 1 Qi i- 7.i (72.b)

A A

- EQ i a + a P Q1  + E Q Qi + Qi° EQi-

and

o = ( up -i) HE + (%i -api)

+i{E P + E a E. a.Zi -Pi

(73)

0 m ~CF) EQ + EQ Hj30Q I { Qi } -Zi b

+{ + zQi 3 i

Now suppose Zp 0 and Z s 0. Considering (73.a),
it is clear that sice )m -P isiable, (im -°Pii' ) and
((i{Zp } 'm -Pi-l) are stabilizable and detectable,
respec irely. Then, by Lemma 6, Z exists as the unique
positive semi-definite solution of 1-1 (73.a). Similarly, from
(73.b), Lemma 6, and the assumption Z S 0; E is negative
semi-definite. -
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Since -Qi E Q < 0 and a^ 0, use of (68.a) and Lemma 4

shows that [Pi il-+ XiiP is negative semi-definite.

Similarly [P i-1 aE.Pi-l + EPi-1 a P i - 1 ]  0 so that the second

line of (72.a) is positive semi-definite. Consequently, since

(ii -Qi) is stable, Zp. is the unique positive semi-definite

solution of (72.a) by virtue of Lemma 4.A. Analogous reasoning

on (72.b) shows that ZQi - 0.

Thus, on the assumption that Z > 0 and ZQi_l - 0, we

have shown that E Pi-i 0, EQi_l -< 0, ZPi l > 0 and Z Qi -  < 0.

Induction on i shows:

p. , ZP. -0

1 1

Qi ZQi

for all i provided that P1  P Z 0 and Q -Q 5 0. Under the
1 0 1 A0t

choice (69) this must be so, for by Theorem 6, P1 > P = P0 and1 0
Q1  Qu = Qo

Thus (67), (68) and (69) define Pi and Pi as positive defi-

nite nondecreasing sequences and Qi and Qi as positive definite
non-increasing sequences. Moreover, by Theorem 6, these sequences

are bounded both from above and from below. Therefore Lemma 3
A A

implies that the sequences Pi' Pit Qi and Qi possess positive

definite limits, which by virtue of (67) and (68) satisfy (62)

and (63).
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Furthermore, (Pm -aP.) and (5m -Q i ) are asymptotically

stable so that lim (%m -P.) and lir (Um -Qia) are also stable.

Finally, since lim P. and lim Qi exist the results of Lemma 6
i+o I i+M

immediately apply to (67). Thus buth U -oP and -Q- are

asymptotically stable.

To establish uniqueness, suppose that (P1 ' Pl, QI, Q1 ) and
A

(P21 P21 Q2 ' Q2 ) are two sets of positive definite solutions of

(62) and (63). With E1 A P1 -P2 and Zp P1 -P21 (62.a) may be

manipulated to yield:

0 = ( - 2 )H Ep + EP( Um -aP 2 ) + I{P}

+ i{Zp - Ep (74.a)

and

0 - (m - H Zk + E(Ci. -aPI) + I{E

+ i{Zp} + EPa Ep (74.b)

Employing the same reasoning as used in the Appendix for

deriving bounds on P, it is readily seen that I{Z p < ap p.

Thus, since A£ in (74.a) is asymptotically stable, Z is nega-

tive semi-defigite by (74.a) and Lemma 5. Likewise, (74.b)

implies Zp k 0. Since E is both positive and negative semi-
definite, we conclude that = 0. Similarly, Q1 = Q2 " Finally,

A A A A

(P 1 ) and (Q- ^ara found to satisfy the homogeneous forms
of (63), whence P1  P2 and 01 = Q 2 " 0
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As is clear from the above proof, (67), (68) and (69) give

a computational procedure for the numerical solution of (62) and

(63). When P£ and QU are evaluated in accordance with Eqs.

(A.3.1) through (A.3.4) of the Appendix, monotone convergence is

guaranteed (with Pi' Pi non-decreasing and Qi' Qi non-increasing).
It is interesting to note that if the conditions:

A A 2

0= p Q =

are taken in place of (69), slight modification of the above
Aproof again shows convergence of (67) and (68), but with P i' P.

non-increasing and Qi' Qi non-decreasing.

Theorem 5 is now directly applicable. Thus it is possible

to summarize definite conclusions with regard to stochastic

stability as follows:

Corollary 2

Under the conditions of Theorem 7, let P, Q, P and Q be the

unique positive definite solutions of (62) and (63). Then with

the constant gains given by (61):

A. (1m -OK), (11 -8K), (ji -fy) and (p -fy) are asymp-

totically stable.

B. The stochastic system (58) is second mean exponen-

tially stable and almost surely exponentially stable.

C. . (61) minimizes the steady state performance index

defined by (43).
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Thus, under the minimum information model of modal frequency

uncertainties, the compensator design approach embodied in Eqs.

(61) through (63) minimizes a measure of performance defined over

the entire parameter ensemble and guarantees closed loop stochas-

tic stability.

3.3 Asymptotic Properties for Large Uncertainties

The previous section established the existence and unique-

ness of solutions to (62) and (63) under the controlability and

reconstructability conditions of Theorem 7 and for all positive

I. It is thus natural to inquire what behavior P and Q attain

for large uncertainties, i.e., for very small decorrelation times.

This case represents the situation in which very great a priori

uncertainty exists regarding the values of all modal frequencies.

In connection with the stochastic Riccati equation, Theorem

16 of Ref. [17] immediately yields the following:

Lemma 7

Assume the conditions of Theorem 7. Let P and Q be the

unique positive definite solutions of (62) given any positive

semi-definite P and Q. Introduce a positive scaling parameter,

J, into I:

.z = J0 ; J>0 , >0 (75)

Then:

48



lim P P*
Jt00 (76)

lim Q =Q*
J too

where the diagonal matrices P* and Q* are uniquely determined by:

0 = H p + p, I + + '{r _ {p,} {a)

(77)

0 = Q* + Q* -H + {A 2{Q,}2
V {Q1 + {Vl} {* a

This result readily leads to the main conclusion

Theorem 8

Let P and Q be the unique positive definite solutions of

(62) and (63) under the conditions of Theorem 7 and define I as

in (75). Then:

lim P = P* (-2 Re - I {rl}
J tCO(78)

lim Q = Q* A (-2 Re) -  {v,}

Proof
A A

By Theorem 7, P and Q exist as positive definite solutions

of (62) and (63) for all I k 0 and therefore possess boundedA A

limits P* and Q*, respectively, as J increases without bound.

Then (77) yields:
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0 P*

0 = *~P, + p* j + T{p*} + {r 1 } 1 {a}
:: ( 79)

0 = "Q* + Q* VI + I{Q*I + {v 1 } -I* 2 {-a (

Furthermore, since I > 0, ((P a P) ,I) is reconstructible
and (I,(Q a Q)h) is controllable for all P, Q > 0. Then (63.a)

gives:

{P*} ir {P} = l ir {P a PI
J+- J+- (80.a)

I-i {p*1 2 {Y}

Similarly, from (63.b):

{Q,} A lim {Q} = I- 1 {Q,}2 I (80.b)
J+-

and (78) follows by substitution of (80) into (79). 0

Thus, as modal frequency uncertainties increase without.

bound, the optimality conditions-possess very simple asymptotic

solutions given by closed analytical expressions. Referring to

Theorem 16 of Ref. [7] it must be noted that for the full state

feedback regulation problem, diagonalization of the expected

cost matrix gives rise to a rate feedback control law which is

inherently stable for all values of modal frequencies. Thus

.so
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Ui = R-8 H P*

implies that only the estimated modal valocities are used as

control input.

In this case, it is also of interest to investigate more

particularly the asymptotic form of the control law for large .
For this purpose, suppose that z, , and y are the modal par-

ameters for a particular realization of the structure as distinct
from the nominal or design values, _p, 8 and y. Then the system

equations for the actual structure in connection with the

designed compensator are:

= -'K q a.

1(81)
$= (i-8K-fy) q + f y b.

Now as I > 0 increases, the compensator poles recede into the

left half plane owing to the term -hI in -- . Thus, for large I
mwe may consider a singular perturbation expansion for q as a

functional of . In the first approximation - i.e., to first

order in 1-i:

q ~ 21 f* Y + o(I - ) (82)

where f* A lim f. Then, to first order, in singular perturba-
tions, the Jc ontrolled system is given by:
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= -2 (P* 1- Q*) a y

A -210H (83)

H -l -

from (82) and (81.a).

To zeroth order, (83) shows that large uncertainties tend

to remove the control altogether. However, to first order we

have the following property:

Lemma 8

Consider (83) with P* and Q* as given by (78). If =H
Y M OH , and v2 = vR2 (where v is a positive scalar) then (83) is

asymptotically stable for all U with Re < 0 and all ', and the

control is a rate output feedback law.

Proof

Let 4 H . Then, from (83):

= 2 CH CRec -r] c

(84)
r ~~('~ Il*) a+ 2 (P* 11 Q*)

- H H -H

In the case = , Y= B and v2 - vR 2 we have = va so

that r is hermitian. Further, since P* 1-1Q, is positive and

diagonal, r k 0. Then, with Rev < 0, < 0 for all 0 , . Thus,

Z is a Lyapunov function. That this case represents a rate
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7. 1 Tv 4. . . . .

output feedback law is easily verified by transforming (83) back

to the modal coordinate basis in accordance with relations (7)

and (87). 0

In other words, for large modal frequency uncertainties and
coloatd at snsrs -H H

co-located rate sensors (= ~ , y = B ), the asymptotic control

is a rate feedback law proposed by Balas [4] which is stable in

the presence of errors in all modal parameters.

Analogous results are to be expected when uncertainties in

low frequency modes are small while modelling accuracy degener-

ates for modes of increasing order. In this instance we antici-

pate that the control designed according to Eqs. (61) through

(63) will necessarily upproach the asymptotic form for the high

frequency, poorly known modes, while resembling the determinis-

tic plant compensator design for the low order modes.
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4. FULL-ORDER COMPENSATION: NUMERICAL PROCEDURES & RESULTS

4.1 Computational Methods

For computational purposes it is advantageous to work with

(61) through (63) in the original modal coordinate basis rather

than in the complex form given above. Letting:

-A 0-Htl I A ,-1H -1

(85)
~ QQOH AAH)

and

-A -1
q *q

K KI 1 (86)

F 0 f

system (17) assumes the form

S= (A+ a(t))x -BKq + w

(87)

q C -hIfl -BKq + F C(x -q-) + F w2 )

Using (5) through (8), (14.c) and (85), relations (61)

through (63) become (we shall suppress the tildes of P, Q, etc.

in (85)):
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K = R21 BT P

(88)

V2 1
F = Q 6T  21)

-4

0= Am P + P Am + DQ[I, P + P + R1 -P E p

0 = + 1 -Q!Q(89)

*1~0 = X TA -Q +) p -Q + p E p1mm ^~ ^(90)

0- (Ai Z P) + Q( P) +

where:

Z B R1 B (91)k2

CT V21 C

and where for any square matrix, M:
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Ak IM. -2 [Z2 ]D P IM = block-diag [M2kk,2k 1 + l2
S...,n i2 -w k 0 1(92)

DQ[IM]= block-diag [ kM2k-l,2k-l + M2k,2k ]
3k=l,...,n

We also note, for future reference, that the asymptotic

solution, (78), for large uncertainty levels becomes:

P* - block-diag 1 + W 2 -R 1
k=l,...,n 14nkW '  1 2k-1,2k-1 k 12k,2kk k (93)

block-diag W[kVl + V1  ] 0-2

k=l,...,n [4  k 1 2k-l,2k-1 2k,2k

in the modal coordinate basis.

With the above expressions, the discussion of computational

techniques may proceed. First, note that the proof of Theorem 7
gives rise to a convergent sequence of approximations to P, Q,
A ^

P, Q and yields the following algorithm:

Theorem 9

Under the conditions of Theorem 7 and denoting the positive

definite solutions of (89) and (90) by P, P, Q and Q:
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A A A A

lim (Pk' Pk' Qk' Qk)  (P P' Q, Q) (94)
k+c

where the sequences {Pk } , {Pk 1 {Qk) and {Q k are defined

(for k = 0,...,w) by:

0 = P + R m + l+DP[I, Pk + Pk] -P P

(95)

0 m Qk + Qk A + V 1 + DQ(II Qk + Qk ] -Qk k

T^

o =Pk+l (A!U-Qk f) + (Xm -k k+1 + k
(96)

o=A T +A0 Q k+l (Am - Pk )  + (A E- Pk ) Qk+l + Qk Q k

with either:

A ^ A
PO= , = QU (97)

or

PO = P Q = (98)

Furthermore, P , Q , P and QU are defined as the positive

definite solutions of
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-. U
^

_U + - U
0 = P %m+AP + P E P a.

0 = XT pU + pU X + R + DpI, PU + PU] -PU E PU b.

(99)
0 - Qu A AmQ+ u u c.

0 Am 0u + + Vi + D Q_[I, Q Q Q d.

0 P (A _QU T) + ( _QU r) T A E p a.

0 =- XT P + P - + R + D [I,P] -P E P b.
.4 (100)

At r U T + U At y~ QC

0 = QA -EP)% +( -E+ P),Q +Q E Q d.

The proof is immediate from that of Theorem 7 and use of

the transformations (7), (8), (85) and (86).

The above computational scheme requires at each step, the

solution of Lyapunov equations, standard Riccati equations and

stochastic Riccati equations of the form considered in [7].

This is obviously the case for (95), (96) and (100). To see
that, at most, solution of stochastic Riccati equations is re-

quired for computation of the starting values, consider (99).

Setting Ps A PU + Pu, addition of (99.a) and (99.b) produces

the stochastic Riccati equation:
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o0 P5 Km XT Ps + R+ I, P] (101)

This defines P s> 0 uniquely, and (99.b) may be written

• 5 5

0 =K PS +P -Am + R + Dp[ P] -P P (102)m m 1 P s

Thus, PU is the unique positive definite solution of an ordinary
Riccati equation. Finally, solution of the Lyapunov equation

A

(99.a) yields pu. An analogous scheme may be used for determi-

nation of Qu and Qu from (99.c,d).

Although convergence of the sequences defined by (95)
through (100) is assured, the numerical procedure involves

stochastic Riccati equations at each step, and these, in turn,

demand an iterative method of solution.

In place of the above rather cumbersome method of solution
we may introduce a much more direct iterative method based upon

the following computational sequence (k = 0, 1, 2,...):

(K ~pK)T ( -E P k + R a.E=P Pk+l + Pk+l "

+ DpEl, Pkc + P ] + PkxP (103)
AA

0= (K P + Qk(m Qp) b.
m - k P)k+l + Qk+l(A -Pk )  +k k b
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o (Am -Qk E)Qk+l +  k+l (mQk -)T + Vl a.

+ DQ[r, Qk + Qk ] + Qk Q k (104)

0 =( m -Qk) Pk+1 + Pk+l m -Qk + Pk E Pk b.

with starting values defined by:

P 0 = 0 (105)

T Po + Po + R1 -Po E Po = 0
(106)

AQo + QoT + V 1 -Qo Q = 0

Note that (103) and (104) entail only the solution of

Lyapunov equations. Because of its evident convenience, this

approach, in preference to that of Theorem 9, has been imple-

mented computationally. Although proot of convergence remains

the object of investigation, the sequence defined by (103)

through (106) have been found to be convergent in all numerical

studies performed to date.

In the specific implementation of (103) through (106) used
to obtain the numerical results discussed in the following

sections, the iterative sequence is terminated once all diago-

nal entries of P and Q converge to within a given tolerance -

i.e., given e > 0, solution of (103) and (104) is carried up to

k - kT (e), where
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i T i (107)

.QT 
T ii

The Lyapunov equations (103) and (104) are solved by the
real Schur vector approach following Kitagawa [21] while the

Riccati equations (106) are solved by the real Schur vector

technique of Laub [22].

The major computational burden in solving Lyapunov-type

equations is in reducing the stability matrix to real Schur

forms. Hence, computation is reduced by half when only one

reduction is used to solve (103.a) and (103.b) and one for

(104.a) and (104.b). Clearly, the solution sequence of (103)

and (104) also reduces storage requirements.

4.2 General Description of Design Studies

In the remainder of this report, we discuss application of

4the stochastic design approach to various simple example prob-

lems. This is done mainly with a view toward illustrating the

improvement in robustness properties to be expected and the

qualitative form of the control, particularly for large levels

of modelled frequency uncertainty.

In all examples considered, the system retains the general

form of (87):

( ) = [A m BK] + ( (108)q F mBFC q F

"4. except that
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A = [ (109)
10 A e

where Ae represents the elastic modes while Au now comprises both

rigid body and unstable modes. Matrices B, C, K and F are as
defined previously, and w1 and w2 are white noise processes with

intensity matrices V1 and V2, respectively.

Uncertainty is modelled only in the open-loop frequencies

associated with the elastic modes. It is assumed that open-loop

frequency deviations are normally distributed random variables.

In consequence, if Tm denotes the decorrelation time correspond-

ing to the mth elastic mode, then (32) yields:

Tm = L ( % l(110)
xi 2 (.Omm

where 0 is the standard deviation of the mth elastic mode fre-

quency relative to its nominal value, *m" For illustrative pur-

poses, we adopt the simple model

m = a° m (111)

to reflect a degradation of structural modelling accuracy with

increasing nominal modal frequency. Thus, in the following

example problems, modal frequency uncertainty levels are

uniquely defined by the relative standard deviation, a, of the

first mode.
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*17 
_7

Although second-mean stability is proved under the condi-

tions stated in Theorem 7, it is desirable to demonstrate robust-
ness for specific designs by determining stability for a range of

* parameter variations.

To this end, we conduct sensitivity studies as follows. For

each compensator design (corresponding to particular nominal

* values and a value of a in (111), we compute the closed-loop poles

for a set of perturbed system models obtained by replacing the

nominal value of the elastic mode dynamics matrix, Ae , by:

Ae6 block-diag _2 2(112)
e~ ~ L (1+6 ) -2rnkWk~+

where a range of values of the relative frequency deviation, 6,

are considered.

obviously, since (112) implies a change in all modal fre-

quencies by a fixed percentage, robustness for independently

random frequency deviations cannot be established. However,

perturbations of the above form still provide a convenient and

practical means of illustrating relative stability for a sub-

casof the parameter uncertainties originally postulated.
Note also that (112) involves variation directly in the struc-

tural mode frequencies as opposed to parameter variations of the

form (10). Thus, although uncertainties in structural mode fre-

.4 - quencies are closely allied with open-loop frequency uncertain-

ties, unconditional stability under such perturbations may not

be expected and (112) provides a good test of the robustness

properties of the stochastic design.
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Further important features which we wish to illustrate in

the following are the progressive diagonalization of P and Q

with increasing uncertainty level and the concomittant reduction

of the controller form to rate output feedback in the case of

colocated actuators and sensors. To demonstrate diagonalization

of P and Q, we introduce the following measures of diagonal dom-

inance:

1 I~ijl/(PiiPjj -
- ij/(Q

.1 th

Qi
.4 Clearly, P., Qi 0, with equality if and only if the it column

is zero except for the ith element.

4.3 Numerical Examples

The first two examples discussed here involve low-order

systems and are intended to illustrate the robustness properties

to be expected under the stochastic design approach. We partic-

ularly consider the effect of rigid body and unstable modes and

non-colocation of actuators and sensors. The last example dem-

onstrates the asymptotic properties of the control for large

uncertainty levels for a fairly high-order system.

A. Two Mass System

The two mass system shown in Figure 2 provides a simple

example to illustrate the relative stability of the stochastic

design approach. We assume a force actuator located on mass 1
and suppose that mass 2 is subjected to a white disturbance

force, w, of unit intensity. Also, for simplicity, mil, m 2 and k
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are set equal to unity. Ignoring damping for the moment, the

dynamic equations are:

S -x1 + x 2 + u

(114)

2 = x1 - x2 + w

It is desired to suppress the mean-square displacement of mass 2.

Thus, we choose:

= 2 2(15is = E[x 2 + u (115)

Finally, two cases of sensor location are considered:

non-colocation: y = x2 + w 2

(116)

colocation: y = X1 + w2

where w2 is observation noise of unit intensity. Note that in

both cases, displacement sensing is assumed.

Recasting this problem in the modal coordinate basis and

assuming 0.5 percent modal damping, the various matrices appear-

ing in (108) and characterizing the control formulation (88)-(90)

become:
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o 1 0 °0.001
= 0 0 0 B 0.50 (117.a,b)

0 0 0 1-0.17

0 -2 -0.011 17

Non-colocation: C = (1, 0, -1, -1] a.

S(118)

Colocation: C = [1, 0, 1, 1] b.

1 0 -l 1

R 0 0 0 n 2  = 1 (119.a,b)
l 1[ 0 1

4J 0 1

0.00 0.20 0.00 0.00
=v = 1 (120. a,b)

V .00 0.25 0.08 -0.08 V2 1 10ab
0.00 0.08 0.03 -0.03

0.00 -0.08 -0.03 0.03

These relations define the nominal system model. Uncertainty

in the single open-loop elastic mode frequency present in this

problem is modelled as in (110) and (111) with a denoting the

standard deviation relative to the nominal frequency W = / .

Under the above assumptions, we now discuss the non-

colocated and colocated sensor cases separately as follows:
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A.1. Sensor at Mass 2 (Non-Colocation)

Using (103)-(106) we first generated three designs corre-

sponding to uncertainty levels a - 0.0, 0.5 and 1.0. For each

such design, closed loop poles were computed for modal frequency

perturbations of the form (112), with 6 varying over the range

±0.90. Note that since there is only one elastic mode, such

root-loci fully characterize robustness under modal frequency

uncertainties.

The root-loci are shown in Figures 3, 4 and 5, where pole

locations for the nominal system are indicated by solid dots.

* The deterministic plant, LOG design (a = 0) shown in Figure 3 is

unstable for frequency variations 6 = -0.22 to -0.90 and

6 - 0.10 to 0.50. It is seen that the nominal system poles at

-0.2 ±l.4i, corresponding to compensator poles, tend to push the

closed-loop elastic mode into the right half plane. In contrast,

the stochastic design with a = 0.5 (Figure 4) places these

offending poles at -1.1 tl.5i (for the nominal system), thereby

minimizing their effect on the elastic mode. This stabilizes the

design for positive frequency variations but the system is still

* unstable for variations with 6 = -0.25 to -0.9. When the model-

led uncertainty level is increased further (a = 1.0, Figure 5),

an increased stability margin is achieved for positive frequency

* variations but the unstable region for negative variations

remains virtually unchanged.

A.2 Sensor at Mass 1 (Colocation)

Here, we again consider three designs corresponding to

a -0, a = 0.5 and a = 1.0, and plot the root-loci for varia-

tions of 6 from -0.9 to +0.9. The results are shown in Figures

6, 7 and 8. in this case, the deterministic design (Figure 6)

is unstable for variations 6 = -0.15 to -0.60 and for 6 a 0.30.
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0.5

0" --__I

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.!5

REAL
TWO-MASS SYSTEM SENSOR AT MASS 2

Fig. 3 Closed-loop poles for two mass system,
non-colocated case, = 0
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1 1f I

2.5 * NOMINAL SYSTEM (6 = 0)

o PERTURBED CASES (6 e [-0.9, 0.91)

2.0 I-
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-

z

1.0
0.

.0

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5

REAL
TWO-MASS SYSTEM SENSOR AT MASS 2

Fig. 4 Closed-loop poles for two mass system,
non-colocated case, a -
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2.5 -- NOMINAL SYSTEM (6 = 0)

_' 0 PERTURBED CASES (6 e [-0.9. 0.91)

2.0
cc

w1.5 i-

.5

t't

S -2. -20-._10-. .

1.5 -o ) I

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5

REAL
TWO-MASS SYSTEM SENSOR AT MASS 2

Fig. 5 Closed-loop poles for two mass system,
non-colocated case, a = 1.0
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REAL
TWO-MASS SYSTEM SENSOR AT MASS I

Fig. 6 Closed-loop poles for two mass system,
colocated case, a =0.0
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Fig. 7 Closed-loop poles for two mass system,
colocated case, o = 0.5
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Fig. 8 Closed-loop poles for two mass system,
colocated case, a 1.0
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On the other hand, the stochastic design for a = 0.5 (Figure 7)

is unstable only for 6 > 0.70. This stability region is still

further extended to 6 < 0.90 by increasing a to 1.0 (Figure 8).

Thus, it is seen that with sensor/actuator colocation, the

stochastic design can extend the stability region for both posi-

tive and negative frequency variations. Overall stability char-
.4 acteristics may be shown as in Figure 9, where we have combined

the previous results with design results corresponding to addi-
tional values of a. This figure shows the stability region

(unshaded area) in the 6-a plane. It is clear that by increas-

ing the level of modelled uncertainty in the stochastic design

we may progressively enlarge the stability region.

Summary: Note that despite the presence of a rigid body mode

(the effects of which were not explicitly treated in the preced-

ing theoretical developments), no difficulties were experienced

with the convergence of (l03)-(106). Although increase of the

modelled uncertainty level in the non-colocated sensor case does

progressively increase the overall region of stability, the

stability boundary for negative frequency deviations is not

appreciably affected for large uncertainty levels. This reflects

an inherent limitation in non-colocated systems in the presence

of rigid body modes. On the other hand, in the colocated sensoi

case, as Figuxe 9 demonstrates, the region of stable frequency

deviations increases approximately in proportion to the modelled

quency uncertainty with sufficient conservatism, an arbitrarily

lrestability margin may be secured.
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B. Inverted Pendulum

To illustrate the effect of unstable modes, closed-loop con-

trol of an inverted pendulum, shown in Figure 10, is investigated.

This system was previously considered by Martin [23] and consists

of a flexible beam column pinned to a motorized cart. The beam

acts as an inverted pendulum which can be stabilized by acceler-

ating the cart horizontally with input force u. Measurements of

the cart position and the slope of the beam at its base are

assumed available.

The system model, including all relevant nominal system

parameters are those given by Martin [23] and need not be

repeated here. It suffices to note, however, that the model

encompasses one rigid body mode, one unstable mode and two
elastic modes. The unstable mode frequency is ±3.22 rad/sec

while the first two bending mode frequencies are 3.055 and

22.05 rad/sec. The inherent damping factor for the bending

modes is assumed to be 0.005. Finally, the state weighting

matrix is diagonal:

R diag [0.001, 0, 0.4, 0.1, 0, 0.1, 01 (121)

Uncertainties only in the bending mode frequencies are con-

sidered here and these are modelled in accordance with (110) and

With these assumptions, three designs were computed corre-

sponding to a = 0, 0.2 and 0.5, where a is the first elastic

mode standard deviation. Root-loci for elastic mode frequency

deviations of the form (112) with 6 in the range ±0.30 are

shown in Figures 11 through 13. Notice that, in the deterministic

#t 77



11 204-I

V I

'OF

Fi.1 netd edlmsse

.78



35 Il I I I v  v I vI III !I I I I I I_*-
i: - 11 20848-N I

3* NOMINAL SYSTEM (8 = 0)

- O PERTURBED CASES (b e [-0.3, 0.3])

A. 25

C60
IL 20

)I.z
(D15

10

5

0 01
-10.0 -7.5 -5.0 -2.5 0

REAL
VERTICAL PENDULUM FREQ VARIED -0.3 TO 0.3 x

Fig. 11 Closed-loop poles for inverted pendulum,
a = 0.0
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design (a = 0, Figure 11), both bending modes become unstable

for 161 > 0.03. Increase of the modelled uncertainty to a = 0.2

(Figure 12) pushes the compensator poles deeper into the left

half plane and dramatically increases the stability region to

6 c[-0.09, 0.29]. A still larger value of a (a = 0.5, Figure 13)

completely stabilizes the second bending mode over the range of

frequency deviations considered. On the other hand, while the

first bending mode is also stabilized for all positive frequency

variations, it becomes unstable for 6 < -0.1. In other words,

increasingly large leve~a of modelled uncertainty result in
relatively minor increases in the stability margin for negative

frequency variations.

Summary: Although the theoretical developments of earlier

chapters assumed a stable open-loop system, the computational

scheme of (103)-(106) converged without difficulty in this case

to produce stable, robust designs. However, the above results

do indicate that the presence of an unstable mode limits the

ability of the stochastic design approach to improve the stabil-

ity margin for negative frequency deviations - particularly for

the elastic mode in closest proximity to the unstable mode. In

part, this may be ascribed to the fact that in modelling uncer-

tainty only in the elastic modal frequencies we ignore the influ-

ence of such uncertainties on the unstable mode so that robust-

ness improvement is mainly restricted to those modes (i.e., the

second bending mode, in this case) which are accurately repre-

sented in the stochastic design model. Nevertheless, the

stochastic design approach yields an enormous enlargement of the

stability region over that obtained by the conventional LQG

design.
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C. Simply Supported Beam

Here we consider a simply-supported Bernoulli-Euler beam
with normalized span-wise coordinate as shown in Figure 14. A

force actuator and colocated rate sensor are assumed at
= &a = 2/43. The nominal system dynamics matrix in the modal

coordinate basis is block-diagonal with diagonal blocks of the

form (3). With appropriate non-dimensionalization of the equa-

tions of motion, we may write:

k = k 
, ; - l,...,n (122)

Furthermore, we set:

=k 0.005 , zk (123)

and B and C assume the form:

B CT R2nxl

Bkl =(l + (-1) k ) sin . k (1 + (124)

k = l, ... , 2n

For this example, an "energy" state weighting is chosen:
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Fig. 14 Simply-supported beam with colocated force
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r-2 
o

block-da I Ok (125)
1 k=l,..n [0 1

and we suppose the beam to be excited by a spatially and tempo-

rally white disturbance force with unit intensity, i.e.,.

V1 =block-diag (126)
ka.. .,n 0 1]

Since only one actuator and sensor are used, R 2 and V2 are

-a'positive scalars which we denote by p r and p 0, respectively.

As before, open-loop frequency uncertainties are modelled

according to (110) and (111) so that uncertainty levels are com-

pletely specified by the standard deviation, a, of the first mode.

Clearly, (111) also entails a fairly rapid increase of uncer-

tainty level with increasing modal order.

Under the above conditions, stochastic designs were com-

puted for a range of values of a, pr and p0. For each such

design, root-loci were determined for system perturbations of

the form (112). It suffices to note that both stochastic and

deterministic designs were stable for all frequency variations

* considered. Thus, improvement in rohustness is not an important

issue in this example problem.

What this example shows most clearly is the distinctive

form of the control provided by the stochastic approach.

Figures 15 through 20 contrast the deterministic design (a =0)

with a stochastic design (a = 0.2), both with p r = 0.1 and

-O0.1 and 15 modes retained in the design model.
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Figures 15 and 16 show the diagonal dominance indicators

defined by (113). Recall that P k' Qk = 0 implies that only the

diagonal element of the kth row of P and Q, respectively, are

non-zero. Consequently, the results for the stochastic design

show that except for the sub-blocks corresponding to the first

'-8 modes, P and Q are nearly diagonal. In contrast, the indi-

cators P k and Q. for the deterministic design remain signifi-

cantly above zero for all modes considered.

Diagonalization of P and Q in the stochastic design results

in suppression of displacement loops as can be seen from the

* regulator and observer gains displayed in Figures 17-20. While

regulator position gains increase with modal order in the deter-

ministic design (Figure 17), the stochastic position gains are

negligible beyond the 8th mode. At the same time, velocity

gains (Figure 18) are nearly the same in both designs. The same
general tendencies can be seen for the observer gains (Figures

19 and 20). Thus, displacement loops are almost completely

* suppressed for the higher-order, relatively more uncertain modes

and the solution for the corresponding portions of P and Q

reduces to the asymptotic forms given by Theorem 8.

It should also be noted from Figures 17-20 that gains for

the first three modes (corresponding to more than 20% close d-loop

damping for these modes) are nearly th e same for both determinis-

tic and stochastic designs. This indicates a region of "quasi-

deterministic" control for low order modes.

Summary: This case conforms to the conditions assumed in the

theorems of Chapter 3 and it is no surprise that robust stability

is readily achieved. Moreover, it is evident that the stochasti-

cally designed control for modes beyond the 8th closely approxi-

mates the asymptotic form given by Theorem 8 and Lemma 8. In

fact, since the asymptotic control is rapidly approached with

V 86



BEAM 15 MODE DESIGN

2.00

1.75

w

-~ I-

-J

K 1.50

z

I 1.25

1.0

0

Noo

0 7

z

-a ~ , 0.25

-A -

0.50 ..-

InI

I-

0 15 2 3-' 17 8 901234

-

COLUMN NUMBErR

LEGEND
S 0.SR2CLO - 0.2

C- REGCLO y - 0_0

Fig. 15 Diagonal dominance indicator for regulator

cost matrix

87

i~i.-+., l,+h.0t 8 9 0 1 2 3 4 5 6 7 9 9 0 . . • . . . .



BEAM 15 MODE DESIGN
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increasing modal order, (93) may be used to determine the gains

for as many modes beyond the 15th as desired with no significant

computational burden. Because of the properties noted above for

the control of low-order modes, we may say in summary that the

stochastic design approach automatically produces a high author-

ity, essentially deterministic design for low-order, well-known

- modes and a low authority, rate output feedback control for high-

.4 order, very uncertain modes. These two regimes are seen to exist

as limiting qualitative features of a unified, globally stable

design.
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5. CONCLUSION

In the foregoing developments, the minimum information

approach to the modelling of uncertain structural systems has

been Applied to the mean-square optimal design of full-order

dynamic compensation. It was seen that judicious choice of the

compensator dynamics matrix permits the optimality conditions

to be reduced to relatively simple forms. Under fairly mild

restrictions, these optimality conditions were shown to possess

unique solutions for which closed-loop stochastic stability is

quaranteed. Furthermore, the control reduces to a simple,

inherently robust asymptotic form for sufficiently high levels

of modelled uncertainty.

A simple, straightforward computational scheme was devised

for numerical solution of the optimality conditions. The first

two numerical examples considered in the last chapter not only

show this algorithm capable of handling rigid body and open-loop

unstable modes but also suggest that the conditions assumed in

the existence and uniqueness result of Chapter 3 can be consid-

erably relaxed. Moreover, these example problems show that the

stochastic design approach can enormously increase stability

margins over what can be achieved by a conventional, LQG design.

Furthermore, the last numerical example discussed in

Section 4.3 suggests that when reciprocal decorrelation times

increase monotonically with modal order, closed-loop modes may

be divided into two qualitative regimes: the "coherent" and

"incoherent" systems (to use the terms introduced in Ref. [7]).

Incoherent modes are associated with great a priori uncertainty

and are mutually uncorrelated and uncorrelated with the coherent

system composed of low-order, relatively well-known modes. Since

the mean-square optimal control for the incoherent system is

known in advance (by virtue of Theorem 8 and expressions (93)),
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these qualitative features permit the solution of (89) and (90)

for very high-order systems by combination of (93) with the solu-

tion of the reduced-order forms of (89) and (90) for the coher-

ent system.

Such a scheme would reduce the computational burden to that

associated with the relatively few well-known modes. of course,

this would obviate the difficulties of design computation but not

of implementation. Although the asymptotic form of control for

the incoherent system approximates a rate output feedback law,

thereby aiding practical implementation, a completely satisfac-

tory treatment must await the extension of the stochastic design

approach to fixed-order dynamic compensation.
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APPENDIX 1

Proof of Theorem 4

First, we write (46.c) and (49) in accordance with the state

transformation (50). Using (51), and the notation:

-fy -(A.1.1)

equations (46.c) and (49.a) yield

0 = (UmOK) H & + H--q + P -OK) a.

+r H + - H q)1 2 K q q + q

0 = N1m-OK)H P q + 4HPq + 4OK+ PEq (OtC + a) b. (A.1.2)

0 = 1IC + PH Sic + Pq(Sic + )1 C.
q ~

H

+ K R )c2
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OI* .- .

0 = (I mc-OK) Q0 + tKQ~q + Q0 ('m-BK)H a.

+ - HOH" + ,a +v
Qq KCH + a + v

0 = €m-OK) 0q + OK Q + Q + Qtq(a + BK)H b. (A.1.3)

+ I{Q} + v

0 = OQq+(a+8K) q + q H H + q(a + <) H c.

+ I{Q } + v 1 + f v 2 fH

and (49.b,c) become:

( q + q)

R - + (A.1.4)

P f R = q + q + Q -I Yv (A.1.5)

while the identity, (49.d), assumes the form:

&qd-a + Fq~q q0 (A.1.6)
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Now taking = 0 (i.e., choosing a as in (53)), we show that

(54) through (57) identically satisfy (A.1.2) through (A.1.6).

First note that with P = 0, (A.1.6) becomes

-q - _~H
(Qqq) =q 0

which is identically satisfied by (54.b). With (54), (A.1.4) and

(A. 1.5) assume the forms

H 8H

[C -R71  p] (0 -Qq) = 0

if 0 U

and these are satisfied by (55). By virtue of (55.b), it is

readily checked that with = 0, (A.l.3.b) and (A.l.3.c) yield

Qq = Q q in accordance with (54.b). Thus, Q~q and equation

(A.1.3) need not be considered further. Moreover, with (54.a)

and (55.a), (A.l.2.b) becomes:

0= H pq

which is satisfied if vanishes.
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In consequence, only (A.l.2.a), (A.l.2.c), (A.l.3.a) and

(A.l.3.c) remain for consideration. With C = 0 and (54) these

equations become (56) and (57).

Thus, Eqs. (54) through (57) identically satisfy the sta-

tionary conditions (46.c) and (49).

9

99

- -- --. ; '¥ -i.n -. .. . - ..- - .-.. .-. -, ...-. . . .. . . .. .- - .- - . . .. .. . .. . . . .. .
, ., F. . . ,, - " , "...; , - -. . .- .' - - .: .- - .



APPENDIX 2

Proof of Theorem 5

Since only elastic modes are considered and nk > 0 for all
k, it follows that (p,a ) is stabilizable and (rl, ) is detect-

able. As P is presumed to exist as a positive semi-definite
matrix, ((r + I{P})i) is also detectable by Theorem 3.6 of

Ref. [201. In other words (62.a) assumes the form of the

stochastic Riccati equation for the regulator problem:

-4H

0 - P + Pm + I{P1 + s -P a P

A
s = r1 + I{P) 0

(A.2.1)

(r, & ) stabilizable

(si') detectable

Then by virtue of Theorem 12 of Ref. [7], ii -aP is asymptotically
stable. But -1/2 is non-positive and diagonal so that 'm -aP is

also asymptotically stable. Analogous reasoning for (62.b)

establishes the asserted stability properties of (P-Q a) and

(L -Q j) and completes the proof of part A.

Consider system (58) in the absence of disturbance and

observation noise:
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= I-Kq

(A. 2.2)

= i -8c)q + fy(&-q)

with K and f given by (61). To prove part B we show exponential

asymptotic stability of the second moment response of this system.

Partitioning the second moment matrix of q) in accordance with

(48), so that

Q~~~ Q ,q) Q
QqfH)E (A.2.3)

the Lyapunov equation for Q yields:

- H -H H

&= 1mQC - K Q q &m -Q;qK .' I{Q&q a.

Qq -mQq -BK eq + QYHfH + Q( -fY -6K)H b. (A.2.4)

* Q H HfH HQ (-m-f7_ H )
Qq = fy e q + (pm- fY-aK)Qq + q + 1mc.

Alternately, letting:

AQH = T Q (A. 2.5)
Q~q Qq]
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with T defined by (50), we have:

Q (1m-OK)Q + aKQ&q + Q (Pm-BK)H+ H + a.

Q q Qq + Q (_f H + b. (A.2.6)

Oq =Im-fy)Qq + Qq (mfy)H + I{ C.

Assuming P and P to be positive semi-definite solutions to

(62) and (63), consider the non-negative quantity:

Z= tr [[P Q (A.2.7)
0 P

Use of (62.a), (63.a) and (A.2.7) yields:

-tr[Ql + [In-I] [~H q 2n P a P
Qq Qq -2n] (A. 2.8)

-tr[Q&r I + Qq P a P) < 0

where the last line follows from (A.2.5). Since Q qP a P is

simply E[eK HR2 Kq], we conclude from (A.2.8) that for all

Qo - Q(t=0) 0, BKq converges exponentially to zero in the

mean-square as t increases without bound. Furthermore:
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I
lSQqk I  (E(8<q q H KHsH))k(E(E H)j (A. 2. 9)

In view of (A.2.9) and because A QE[PMQi_ + Q* __m + I{OE}1 is
asymptotically stable (see proof of Theorem 8, Ref. [7]),

(A.2.4.a) shows that Q = Q must converge exponentially to zero.

Now consider (A.2.6.b,c). The term I{Q} in (A.2.6.c) con-

verges exponentially to zero while ( m-fy) is asymptotically

stable. Thus, the solution, q of (A.2.6.c) converges exponen-

tially. Since both (1 m-8I) and (P m-fY) are asymptotically stable,

similar reasoning applied to (A.2.6.b) shows that Q q also con-

verges exponentially. Consequently, all elements of Q converge

exponentially to zero as t increases without bound and system

(A.2.2) is second mean stable. Almost sure exponential stability

is then directly implied.

Finally, since (61) through (63) imply the stationary con-

dition and the control given by (61) is admissible, the conclu-

sion of part C follows by Lemma 2.
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APPENDIX 3

As a preliminary step to the proof of Theorem 6 we show:

Lemma A.3.1

Under the conditions of Theorem 6 suppose that Pi, Qi > 0.

Then:

a V controllable

(r1 ,Pm )  I (CaUM) reconstructible

and

((PiUPi) , Pm-Qi) reconstructible

(pm-Pi, Qi Qi) ) controllable

Proof

(ic ) is controllable if and only if (see Ref. [201, p. 45)

rank [i -Al, a I = 2n

for all A defined on the spectrum of P. Since u and I are both

diagonal and the modal frequencies, iikF k = l,...,n are assumed

distinct, this implies:

rank [im-Al, a ] = 2n
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for all A on the spectrum of jm Therefore (0m,a ) is control-

lable. The stated conclusions for (1mV 1), (rl 13m) and (T-- ,Pm)

can be shown in a similar manner.

Now consider the matrix V-Hm -Xl,Pi8] with A on the spectrum
-H 1of U-m . Writing this in the modal coordinate basis (in which the

nominal system map, , has the matrix block-diag -2 )
-H -W-H

and noting that (U--m, S) is -'Pk -2k--k

controllable, it is seen that the rank of IV4 -Al,Pia] is less

than 2n only if 8 is orthogonal to more than one row of Pi. But
since P. > 0 this is impossible. Thus.

-- H

rank [--H -Al, Pi8] - 2n

for all A on the spectrum of UM" This implies:

2n-1 -H k 2n
71 (PM) =C

k=0

where p denotes the image of Pi.. In consequence, denoting the

image of yH by G:

2n-1 -H k 2n-1 - k 2n-2

k-0 -=0 k=0 m

= 
2n
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i.e., (l-m -60i,P-B) is controllable. Since R2 > 0 this means
-Qi,(PiaPi ) is also controllable. Therefore

((PiOPi)hTim-QiF) is reconstructible. In exactly analogous

fashion, (Tm-i,'(Qi ii') may be shown to be controllable.

The following helps to show that all members of the

sequences defined by (67) and (68) can be made positive definite:

Lemma A.3.2
A

Under the conditions of Theorem 6, P >0 and 0>0
together with (67) and (68) imply:

Pit Qi > 0 ; i 0

(im-aPi) & (im-QiJ ) stable , i -a 0

Pit Qi > 0 ; i z 1

Proof
A A

Suppose that P. > 0 and Qi > 0. Then by Theorem 3.6 of

Ref. [201 ((r1 + I{Ai) ,) and (j,(v I + i{Qi}) ) are recon-

structible and controllable, respectively. By virtue of Lemma 6

and (67), Pi and Qi are positive definite and (Vm-aP i ) and

(im-oi) are asymptotically stable.
mi A A

Now Pit Qi > 0 implies ((PioPi) ,m-Qia) reconstructible

and ( apHi,(QiaQi) ) controllable by the previous Lemma. Thus,
7m 

A i'A 
Aby virtue of Lemma 4.A and (68), Pi+l and Qi+l are positive defi-

nite. The stated conclusion then follows by induction on i. 0
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As a final preliminary step, we specifically establish

quantities which will serve as upper and lower bounds for the

sequences defined by (67) and (68).

Lemma A.3.3

Positive definite PU, Pu, 0u, QU are uniquely defined by:

0 u.!-M + -HP + Pu p a.

(A.3.1)
-lpu + PUm + rl + l{pu} + lpu _pp b.

um +  + QU5QU a.

(A. 3.2)
S u-H - b.0 0u + 0 Um + Vl + if Qu I +  {Qu) -Quu

VP A

Likewise, the equations:

0 = (%-Qa - + ("5-Qu) + P tPZ aP.

(A.3.3)
0 M p +p~ + rl + l{p} _.1 p Lapy b.

O= P + P I'M ~ L~-~Zb

0 M u(_m-PU}H + ( u"m-aPU)Q£ + QtaQt  a.

I (A.3.4)

o M n Q + QH + v + {Q I ) I-QQ b.
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uniquely define positive definite P, P , Q and Q with:

pt < pU ,P pE<pU

(A.3.5)
Q Qu ,Q Qu

Moreover, (p-Q a), (iim-Q -), ( -aPU) and (Gm -aP) are stable.

Proof

First consider (A.3.1). From (A.3.l.a) and the assumption

x () < 0:

1 {,u} < {pUYpU}

Then, by Lemma 6 and (A.3.l.b) it follows that P < P, where:

0 = -H + P*"5 + rl + I{P*} + {P*ap*} -PP* (A.3.6)

Hence the diagonal portion of P* satisfies:

0 - i!{P*i + {P*ha + {r1 1
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As X R() < 0, {r 1 1 2 0, this uniquely defines 0 5 {P*} < =.

Since P* is hermitian, it follows that P* and hence Pu is bounded.

Likewise, from (A.3.1.a), PU is bounded and positive definite.

With the aid of Lemmas 4 and 6, the sequences PU and p'U

(i 0) defined by

gA u H^u uo u
0 = i+lPm + VmPi+l +P ap

0 -Hp u pU--= r ~p U
= + P ? + + r + I{P + P ) -PiuPi (A.3.7)

0 0

may be shown to be positive definite, monotone nondecreasing and,

by the previous argument, bounded from above. Use of Lemma 3

then implies that (A.3.1) possesses positive definite solutions

for PU and * To show uniqueness, let (Pu, P) and (PU be1p be
two sets of solutions. Manipulation of (A.3.1) produces:

o - z + z l + )

where Z denotes (P + P -P2 -P). It is easily seen that

_* A [i Z + Zji + I{Z1] is asymptotically stable, whence Z = 0

uniquely by Lemma 5. Thus PU + pu in unique, and (A.3.1.b)

assumes the form:
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M -J1 L*. -A-..- w.

-H U u- u U0= Ump + P Um + r -P ap

A

S r + {Pu+ P')}k0

where r is uniquely defined and ( r, m) is reconstructible.

In consequence, the above Riccati equation uniquely defines PU

as a positive definite matrix.

Thus (A.3.1) possesses unique positive definite solutions

for PU and Pu. Moreover, application of Lemma 6 shows that
(5m _u) is asymptotically stable. The stated results for

(A.3.2) follow analogously.

Finally corqider (A.3.3). Application of Lemma 6 to
(A.3.3.b) and Lemmas 4 and A.3.1 to (A.3.3.a) suffice to show
the existence and uniqueness of positive definite solutions and

the stability of (%m -aPl). The results for (A.3.4) follow

similarly.

Note that since PU > 0, comparison of (A.3.l.b) and
(A.3.3.b) yields P1 5 Pu by Lemma 6. In consequence, use of
Lemma 4 on (A.3.l.a) and (A.3.3.a) suffices to show P: P

Analogous proof of the remaining properties, (A.3.5), is
straightforward. 0

Now we are in a position to prove Theorem 6.

Proof of Theorem 6

Suppose that

)A
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From the previous Lemma PE > 0 so that Pi > 0 by Lemma A.3.2.

Hence, Lemma 6 and comparison of (A.3.3.b) and (67.a) yields:

P. > Pt
1

Similarly:

Qi > Qt

A A

Also, since Qi 5 QU, it follows that

Qi < QU

from Lemma 6 and comparison of (A.3.4.b) and (67.b). Similarly,
p. pU.

1

Manipulation of (68.a) and (A.3.3.a) gives:

A A - A ( Qu H A At

0=~ i+l _P)tl(mQ mQu - ) - i
A A(A. 3.9)

+ 1P- (P i-P) + s

where
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F~ ~ -7.. -. .-

A A

S P Pi+l(Q _ a + a (QU _Q1 )Pi+l

(A. 3. 10)

+ PlaPi + PiaPt

A

Now Qu -Qi 2 0 and k k 0 and, since P.+1 > 0 by Lemma A.3.3,
the positive semi-definiteness of [p._,(QU -Q.)a + U(QU _Q.)p .]

follows by use of Lemma 4. Similarly, (P aP. + P aP ) > 0 so

that S a 0. Also, because Pi -Pi > 0, (((Pi -PI)G(P i -P x )OF

,T _QUa) is reconstructible by Lemma A.3.1. Then, since

(j -Q a) is asymptotically stable, Lemma 4.A gives
Im

A At

Pi+l >

Repetition of the same sort of argument yields
A A it 

i+l A

Qil> Q I P i P~ and Q1+ Q In summuary, we have shown
that (A.3.8) implies:

P I < P i <5 pU ' <0 i <9 Ou

^ 0 A A U A U

P i < .+l < u , < .+. <u

Induction on i completes the proof. 0
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